A Complete Procedure for a Constraint-Type Fictitious Time Integration Method to Solve Nonlinear Multi-Dimensional Elliptic Partial Differential Equations
نویسندگان
چکیده
In this paper, an efficient and straightforward numerical procedure is constructed to solve multi-dimensional linear nonlinear elliptic partial differential equations (PDEs). Although the for constraint-type fictitious time integration method overcomes stability problem, parameter’s definition, accuracy computational efficiency have not been resolved, lack of initial guess values results in reduced efficiency. Therefore, normalized two-point boundary value solution Lie-group shooting proposed considered avoid problem value. Then, a space-time variable, including minimal step convergence rate factor, introduced study relationship between factor. Some benchmark examples are tested. As show, using can significantly converge within one step, better than that demonstrated previous literature.
منابع مشابه
Finite integration method for solving multi-dimensional partial differential equations
Based on the recently developed Finite Integration Method (FIM) for solving one-dimensional ordinary and partial differential equations, this paper extends the technique to higher dimensional partial differential equations. The main idea is to extend the first order finite integration matrices constructed by using either Ordinary Linear Approach (OLA) (uniform distribution of nodes) or Radial B...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A Nodal Sparse Grid Spectral Element Method for Multi-Dimensional Elliptic Partial Differential Equations
We develop a sparse grid spectral element method using nodal bases on Chebyshev-Gauss-Lobatto points for multi-dimensional elliptic equations. Since the quadratures based on sparse grid points do not have the accuracy of a usual Gauss quadrature, we construct the mass and stiffness matrices using a pseudo-spectral approach, which is exact for problems with constant coefficients and uniformly st...
متن کاملThe Tanh Method: A Tool to Solve Nonlinear Partial Differential Equations with Symbolic Software
The hyperbolic tangent (tanh) method is a powerful technique to symbolically compute traveling waves solutions of one-dimensional nonlinear wave and evolution equations. In particular, the method is well suited for problems where dispersion, convection, and reactiondiffusion phenomena play an important role. The technique is outlined for the computation of closedform tanh-solutions for nonlinea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11010213